Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis.
نویسندگان
چکیده
Exogenous abscisic acid (ABA) induced the alcohol dehydrogenase gene (Adh) in Arabidopsis roots. Both the G-box-1 element and the GT/GC motifs (anaerobic response element) were required for Adh inducibility. Measurement of endogenous ABA levels during stress treatment showed that ABA levels increased during dehydration treatment but not following exposure to either hypoxia or low temperature. Arabidopsis ABA mutants (aba1 and abi2) displayed reduced Adh mRNA induction levels following either dehydration treatment or exogenous application of ABA. Low-oxygen response was slightly increased in the aba1 mutant but was unchanged in abi2. Low-temperature response was unaffected in both aba1 and abi2 mutants. Our results indicate that, although induction of the Adh gene by ABA, dehydration, and low temperature required the same cis-acting promoter elements, their regulatory pathways were at least partially separated in a combined dehydration/ABA pathway and an ABA-independent low-temperature pathway. These pathways were in turn independent of a third signal transduction pathway leading to low-oxygen response, which did not involve either ABA or the G-box-1 promoter element.
منابع مشابه
Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملDifferential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملMethyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice.
Jasmonic acid (JA) is involved in plant development and the defense response. Transgenic overexpression of the Arabidopsis (Arabidopsis thaliana) jasmonic acid carboxyl methyltransferase gene (AtJMT) linked to the Ubi1 promoter increased levels of methyl jasmonate (MeJA) by 6-fold in young panicles. Grain yield was greatly reduced in Ubi1:AtJMT plants due to a lower numbers of spikelets and low...
متن کاملA unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions.
Glc has hormone-like functions and controls many vital processes through mostly unknown mechanisms in plants. We report here on the molecular cloning of GLUCOSE INSENSITIVE1 (GIN1) and ABSCISIC ACID DEFICIENT2 (ABA2) which encodes a unique Arabidopsis short-chain dehydrogenase/reductase (SDR1) that functions as a molecular link between nutrient signaling and plant hormone biosynthesis. SDR1 is ...
متن کاملArabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance.
Arabidopsis has inducible responses for tolerance of O2 deficiency. Plants previously exposed to 5% O2 were more tolerant than the controls to hypoxic stress (0.1% O2 for 48 h) in both roots and shoots, but hypoxic acclimation did not improve tolerance to anoxia (0% O2). The acclimation of shoots was not dependent on the roots: increased shoot tolerance was observed when the roots of the plants...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 111 2 شماره
صفحات -
تاریخ انتشار 1996